Aerosol models for the CALIPSO lidar inversion algorithms
نویسندگان
چکیده
We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET ) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 10 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment . In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.
منابع مشابه
Remote sensing of vertical distributions of smoke aerosol off the coast of Africa
[1] In 2004 NASA plans to launch the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations— CALIPSO mission, with a two-wavelength lidar aboard. CALIPSO will fly in formation with the Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Aqua satellite. Here we present inversions of combined aircraft lidar and MODIS data to study the properties of smoke off the southwest co...
متن کاملSelection algorithm for the CALIPSO lidar aerosol extinction-to- backscatter ratio
The extinction-to-backscatter ratio (Sa) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. Sa for the CALIPSO lidar will either be selected from a look-up...
متن کاملComparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (hsrl) Measurements and the Calipso Vertical Feature Mask
The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 18 field missions across North America since 2006. The lidar measurements include scale-invariant aerosol parameters that vary with aerosol typ...
متن کاملRetrievals of profiles of fine and coarse aerosols using lidar and radiometric space measurements
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar, expected to be launched in 2004, will collect profiles of the lidar attenuated backscattering coefficients of aerosol and clouds at 0.53 and 1.06 m. The measurements are sensitive to the vertical distribution of aerosols. However, the information is insufficient to be mapped into unique aerosol ph...
متن کاملThe CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm
Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One year of CALIPSO level 2 version 2 data are analyzed to assess the veracity of the CALIPSO aerosol-type identification algorithm and generate vertically...
متن کامل